Šlapal, Josef
A note of F-topologies. (English) Zbl 0712.54001

Let X be a set and let 2^X denote its power set. A mapping $u : 2^X \to 2^X$ is called an F-topology on X if 1) $u\phi = \phi$; 2) $A \subseteq uA$; 3) $A \subseteq B \Rightarrow uA \subseteq uB$; and 4) $u(uA) = uA$. Recall that any transitive binary relation on a set S is called a quasi-order on S. We denote by $A(X)$ the set of all quasi-orders ρ on 2^X satisfying the additional conditions: i) $B \subseteq A \Rightarrow A \rho B$; ii) $\phi \rho A \Rightarrow A = \phi$; and iii) if $A \in 2^X$ and $(B_i)_{i \in I}$ is a family in 2^X such that $A \rho B_i$ for all $i \in I$, then $A \rho \bigcup_{i \in I} B_i$. Now the main result of the paper under review can be stated as follows: Theorem. Let \mathcal{B} be a cover of X and let u be an F-topology on X. Then \mathcal{B} is an open base of u if and only if, for each pair of sets $A, B \in 2^X$, there holds

$$B \subseteq uA \Leftrightarrow (\forall C)(C \in \mathcal{B} \text{ and } A \subseteq X \setminus C \Leftrightarrow B \subseteq X \setminus C).$$

Corollary. Let ρ be a binary relation on 2^X. Then $u \in A(X)$ if and only if there exists a cover \mathcal{B} of X such that, for each pair of sets $A, B \in 2^X$, there holds

$$A \rho B \Leftrightarrow (\forall C)(C \in \mathcal{B} \text{ and } A \subseteq X \setminus C \Rightarrow B \subseteq X \setminus C).$$

Reviewer: P. Morales

MSC:

54A05 Topological spaces and generalizations (closure spaces, etc.)
06A99 Ordered sets

Keywords:

F-topology; quasi-order

Full Text: DOI

References:

[7] Introduction to general topology. Toronto 1934 - Zbl 60.0502.01

This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.