Iwasawa L-functions for multiplicative abelian varieties. (English) Zbl 0509.14048

Iwasawa L-functions for abelian varieties with multiplicative reductions are studied, extending some results proved by B. Mazur in Invent. Math. 18, 183-266 (1972; Zbl 0245.14015) for abelian varieties with good ordinary reductions.

Let \(p \neq 2 \) be a prime, \(\Gamma = \mathbb{Z}_p \) (as an additive topological group) with a generator \(\gamma \), and \(A := \varprojlim_p \mathbb{Z}_p[\Gamma/p^n\Gamma] \). Then the map which sends \(T \) to \(\gamma^{-1} \) induces an isomorphism from \(\mathbb{Z}_p[\Gamma/T] \) to \(A \). The Iwasawa L-function for an elliptic curve was defined as the characteristic polynomial of the \(p \)-Selmer group of the curve. To generalize this definition to abelian varieties, one needs “good” \(A \)-modules which are finitely generated modules \(M \) over \(A \). Such a module is quasi-isomorphic to the direct sum \(A' \oplus \mathbb{Z}/p^n\mathbb{Z}[\{T\}] \oplus (\oplus j \mathbb{Z}_p[\{T\}][F_j]^{p^n}) \) where \(p \) is the free rank of \(M \). \(F_j \) is an irreducible distinguished polynomial for each \(j \). The invariants \(\{\rho, \mu, \{F_j^{p^n}\}\} \) determine \(M \) completely up to quasi-isomorphism (i.e., up to finite kernel and cokernel). The \(\rho \)-invariant of \(M \) is \(\mu := \sum \mu_i \), the characteristic polynomial of \(M \) is \(F_M(T) := p^n \prod_j (F_j(T))^{\mu_i} \) and \(f_M(t) \) is the polynomial satisfying \(f_M(T + 1) = F_M(T) \).

Let \(K \) be a number field with ring of integers \(\mathcal{O}_K \). Let \(A/K \) be an abelian variety defined over \(K \), \(A^0 \) the dual abelian variety of \(A \), \(\Phi \) the connected component of \(A \) and \(\tilde{A} \) be an abelian variety defined over \(K \) with \(\Phi \) its Néron model. Let \(M \) be a \(\mathbb{Z} \)-module with a free rank \(\rho \). (This is a candidate for the \(p \)-adic L-function of an ordinary abelian variety \(A \) with respect to \(K \).) Let \(\mu \) be defined by the short exact sequence \(0 \rightarrow \mathcal{O}_K \rightarrow I \rightarrow I_p \rightarrow 0 \) where \(I_p \) is the maximal ideal of \(\mathcal{O}_K \). The \(\mu \)-invariant of \(M \) is \(\mu := \sum \mu_i \), the characteristic polynomial of \(M \) is \(F_M(T) := p^n \prod_j (F_j(T))^{\mu_i} \).

There is a p-adic height pairing \(\langle, \rangle \) and is equivalent to Schneider’s analytic height \(\langle, \rangle \), where \(\langle, \rangle \) is a p-adic height pairing defined by the author “p-adic heights for semistable abelian varieties”, Compos. Math. (to appear) and is equivalent to Schneider’s analytic height [P. Schneider, Invent. Math. 69, 401-409 (1982; Zbl 0509.14048)]. A necessary and sufficient condition for \(\langle, \rangle_p \) to be nondegenerate is obtained. Further, define the groups \(\mathcal{I} := \text{Image}[H^1(\mathcal{O}_K, A^0_p) \rightarrow H^1(\mathcal{O}_K - T, A^0_p)] \) and \(\mathcal{I}_{\infty} := \text{Image}[H^1(\mathcal{O}_K, A_{\infty}^0) \rightarrow H^1(\mathcal{O}_K - T, A_{\infty}^0)] \). They are quasi-isomorphic to the classical \(p \)-Selmer group of \(A \) over \(K \) and \(L_K \), respectively. Write \(A_{p^n}(L) = A^{\text{inf}}_{p^n}(L) \oplus A^{\text{fin}}_{p^n}(L) \) where \(A^{\text{inf}}_{p^n}(L) \) is the divisible subgroup of \(A_{p^n}(L) \). Then one can define \(A^{\text{fin}}_{p^n}(K) \) to be the \(K \)-rational points of \(A^{\text{fin}}_{p^n}(L) \). Define the \(\mathcal{L} \)-invariant of \(A \) with respect to \(L/K \) at a place \(\nu \in T \) by \(\mathcal{L}(A) := (A(K_{\nu})/NA(K_{\nu}))/(\Phi(\mathcal{O}_K_{\nu}))^{\log p} \). This global \(\mathcal{L} \)-invariant of \(A \) with respect to \(L/K \) by \(\mathcal{L}(A) := \bigoplus_{\nu \in T} \mathcal{L}(A) \).

The main result of the paper is to define a “good” \(A \)-module, \(H \), which is subject to a quasi-exact sequence

\[
0 \rightarrow \mathcal{I}_{\infty} \rightarrow H \rightarrow (\mathbb{Q}_p/\mathbb{Z}_p)^\epsilon \rightarrow 0 \quad \text{or} \quad 0 \rightarrow (\mathbb{Q}_p/\mathbb{Z}_p)^\epsilon \rightarrow H \rightarrow \mathcal{I}_{\infty} \rightarrow 0
\]

where \(\Gamma \) acts trivially on the \((\mathbb{Q}_p/\mathbb{Z}_p)^\epsilon\) term. Let \(f_H(t) = (t - 1)^e f_T(t) \), and define a p-adic L-function \(L_H(s) := f_H(\kappa(\gamma)^{1-e}) \). (This is a candidate for the p-adic L-function of an ordinary abelian variety \(A \) which is semistable at \(p \).) Let \(r = \text{ord}_{s=1} L_H(s) \) and \(\text{rank}_{\mathbb{Z}} A(K) \). Then the main result of this paper is formulated in the following theorem:

One has \(r \geq r + e \). If \(\langle, \rangle_p \) is nondegenerate, then \(r = r + e \) and the \(p \)-th derivative of \(L_H(s) \) has the
A functional equation for $L_H(s)$ is also proved. That is, $f_H(t) = (-1)^\rho f_H(1/t)$ where ρ is the multiplicity of the root of 1 in $f_H(t)$, and similarly, $L_H(s) = (-1)^\rho \kappa(s)(1-s)L_H(2-s)$. Several candidates for such a λ-module are tested, e.g., $H^1(D_L, A_p), H^1(D_L, A_{p^\infty})$, and Greenberg’s module.

Reviewer: N. Yui

MSC:

14G10 Zeta functions and related questions in algebraic geometry (e.g., Birch-Swinnerton-Dyer conjecture)
14K05 Algebraic theory of abelian varieties
14G40 Arithmetic varieties and schemes; Arakelov theory; heights
11G40 L-functions of varieties over global fields; Birch-Swinnerton-Dyer conjecture

Keywords:

functional equation for L-function; derivative of L-function; Birch and Swinnerton-Dyer conjecture; Iwasawa L-functions for abelian varieties with multiplicative reductions; p-adic height pairing

References:

Full Text: DOI

References:

Edited by FIZ Karlsruhe, the European Mathematical Society and the Heidelberg Academy of Sciences and Humanities
© 2022 FIZ Karlsruhe GmbH