Let $\phi : X \to Y$ be a proper algebraic map with connected fibres from a connected quasi-projective n-dimensional complex manifold X, $n \geq 2$, onto a quasi-projective variety Y and let L be an algebraic line bundle on X, which is very ample relatively to ϕ. The authors use Reider’s technique [I. Reider, Ann. Math., II. Ser. 127, No.2, 309-316 (1988; Zbl 0663.14010)] in a local setting to provide results about the adjoint bundle $K_X \otimes L^{n-1}$, which generalize those obtained by A. J. Sommese and A. Van de Ven [Math. Ann. 278, 593-603 (1987; Zbl 0655.14001)] in the absolute case, i.e. when Y is a point. The authors prove that, unless ϕ exhibits (X,L) as a scroll over a smooth curve, the natural morphism $\phi^* \phi_*(K_X \otimes L^{n-1}) \to K_X \otimes L^{n-1}$ is onto. This allows them to construct a normal quasi-projective space X' and algebraic morphisms with connected fibres $\Phi : X \to X'$, $\phi' : X' \to Y$ such that $\phi = \phi' \circ \Phi$ and $K_X \otimes L^{n-1} = \Phi^* \mathcal{L}$, where \mathcal{L} is a line bundle on X', which is ample and spanned relatively to ϕ'. If $\dim(X') < \dim(X)$ then there is a precise description of ϕ, while if $\dim(X') = \dim(X)$ then Φ defines a sort of relative reduction (X', L') of (X,L), up to which, the authors prove that $K_X \otimes L^{n-1}$ is very ample relatively to ϕ.

Reviewer: A.Lanteri

MSC:
14C20 Divisors, linear systems, invertible sheaves
14F05 Sheaves, derived categories of sheaves, etc. (MSC2010)

Keywords:
adjunction; k-spannedness; algebraic line bundle; adjoint bundle

Full Text: DOI EuDML