Goodearl, Kenneth R.; Yakimov, M. T.

Summary: We prove the Berenstein-Zelevinsky conjecture that the quantized coordinate rings of the double Bruhat cells of all finite-dimensional connected, simply connected simple algebraic groups admit quantum cluster algebra structures with initial seeds as specified by [5]. We furthermore prove that the corresponding upper quantum cluster algebras coincide with the constructed quantum cluster algebras and exhibit a large number of explicit quantum seeds. Along the way a detailed study of the properties of quantum double Bruhat cells from the viewpoint of noncommutative UFDs is carried out and a quantum analog of the Fomin-Zelevinsky twist map is constructed and investigated for all double Bruhat cells. The results are valid over base fields of arbitrary characteristic and the deformation parameter is only assumed to be a non-root-of-unity.

MSC:
13F60 Cluster algebras
20G42 Quantum groups (quantized function algebras) and their representations
16T20 Ring-theoretic aspects of quantum groups
17B37 Quantum groups (quantized enveloping algebras) and related deformations
14M15 Grassmannians, Schubert varieties, flag manifolds

Keywords: quantum cluster algebras; quantum double Bruhat cells; quantum nilpotent algebras

Full Text: DOI

References:

Edited by FIZ Karlsruhe, the European Mathematical Society and the Heidelberg Academy of Sciences and Humanities © 2021 FIZ Karlsruhe GmbH


Yakimov, M.

This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.