Antolín-Camarena, Omar; Villarreal, Bernardo
Nilpotent n-tuples in SU(2). (English) [Zbl 07298493]

When G is a topological group and Γ is a finitely generated group, the space of group homomorphisms \(\text{Hom}(\Gamma, G) \) can be regarded as a topological subspace of \(G^\Gamma \). This paper considers \(\text{Hom}(\Gamma, G) \) when \(\Gamma \) is a finitely generated nilpotent group and \(G = SU(2) \). The case when \(\Gamma = \mathbb{Z}^n \) has been studied by multiple authors, for instance in [A. Adem and F. R. Cohen, Math. Ann. 338, No. 3, 587–626 (2007; Zbl 1131.57003); T. Baird et al., Ill. J. Math. 55, No. 3, 805–813 (2011; Zbl 1278.55027); D. Kishimoto and M. Takeda, Adv. Math. 386, Article ID 107809, 43 p. (2021; Zbl 07367645)]. The authors identify the connected components of \(\text{Hom}(\Gamma, SU(2)) \) and their number by noticing that all non-abelian nilpotent subgroups of \(SU(2) \) are conjugate to a group of generalized quaternions. For instance, if \(F_n \) is the free group on \(n \) symbols and \(\Gamma_q^n \) stands for the \(q \)-th stage of the central series of \(F_n \), then \(\text{Hom}(F_n/\Gamma_q^n, SU(2)) \) has one connected component homeomorphic to \(\text{Hom}(\mathbb{Z}^n, SU(2)) \) and all the remaining homeomorphic to \(PU(2) \) (provided \(q \geq 3 \)).

The spaces \(\{\text{Hom}(F_n/\Gamma_q^n, G)\}_{n \geq 0} \) form a simplicial space with realization denoted by \(B(q,G) \), or also \(B_{com}(q,G) \) when \(q = 2 \). The space \(B(q,G) \) is the classifying space of principal \(G \)-bundles of transitional nilpotency class less than \(q \) (see [A. Adem et al., Math. Proc. Camb. Philos. Soc. 152, No. 1, 91–114 (2012; Zbl 1250.57003); Algebr. Geom. Topol. 17, No. 2, 869–893 (2017; Zbl 1360.55003)]). As a product of their work, the authors are able to obtain the mod-2 cohomology ring of \(B_{com}(Q_2^r) \), where \(Q_2^r \) is a quaternion group of order \(2^r \). They also show that the inclusions \(B_{com}(SU(2)) \subset B(3, SU(2)) \subset \cdots \subset B(q, SU(2)) \subset \cdots \) are homology isomorphisms with coefficients over a ring where 2 is invertible.

Reviewer: Enrique Torres-Giese (Langley)

MSC:
22E99 Lie groups
55R35 Classifying spaces of groups and \(H \)-spaces in algebraic topology

Keywords:
spaces of representations; nilpotent groups; classifying spaces

Software:
SINGULAR

Full Text: DOI

References:

Edited by FIZ Karlsruhe, the European Mathematical Society and the Heidelberg Academy of Sciences and Humanities © 2021 FIZ Karlsruhe GmbH
Baird, T., Jeffrey, L. and Selick, P., The space of commuting \((n)\)-tuples in \(\langle SU(2) \rangle\), Illinois J. Math. 55(3) (2011), 805-813. · Zbl 1278.55027

Crabb, M. C., Spaces of commuting elements in \(\langle SU(2) \rangle\), Proc. Edinburgh. Math. Soc. (2)54(1) (2011), 67-75. · Zbl 1222.55007

Okay, C., Spherical posets from commuting elements, J. Group Theory21 (2018), 593-628. · Zbl 1406.20048

This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.