Let κ and a set X denote by $[X]^{<\kappa}$ the family of all subsets of X of cardinality less than κ. For a topological group (G, τ) let us denote by τ_* the set of all neighbourhoods of the identity of G.

Inspired by classic separability, precompactness and narrowness the authors study a family of properties described by subsets of large cardinality and neighbourhoods of the identity. A sublist of these properties is the following:

Let (G, τ) be a topological group and let κ, λ denote cardinals. G is said to be:

- (a) $u_1 s_2^1 u_1$ if for every $U_1 \in \tau_*$ there exists $S_2 \in [G]^{<\kappa}$ satisfying $U_1 S_2 U_1 = G$,
- (b) $s_2^2 u_1 s_2^2$ if for every $U_1 \in \tau_*$ there exists $S_2 \in [G]^{<\kappa}$ satisfying $S_2 U_1 S_2 = G$.
- (c) $u_1 s_2^1 u_3 s_3^1$ if for every $U_1 \in \tau_*$ there exists $S_2 \in [G]^{<\kappa}$ with the following property: given arbitrary $U_3 \in \tau_*$, there exists some other $S_4 \in [G]^{<\lambda}$ satisfying $(U_1 S_2)(U_3 S_4) = G$.
- (d) $s_1^1 u_2 s_1^1 u_2$ if there exists $S_1 \in [G]^{<\kappa}$ such that for all $U_2 \in \tau_*$ we have $(S_1 U_2)(S_1 U_2) = G$.
- (e) $u_2 s_1^1 u_2 s_3^1$ if there exists $S_1 \in [G]^{<\kappa}$ such that for all $U_2 \in \tau_*$ there exists another $S_3 \in [G]^{<\lambda}$ satisfying $(U_2 S_1)(U_2 S_3) = G$.
- (f) $s_1^1 u_2 s_3^1 u_4$ if there exists $S_1 \in [G]^{<\kappa}$ such that for all $U_2 \in \tau_*$ there exists another $S_3 \in [G]^{<\lambda}$ with the following property: given arbitrary $U_4 \in \tau_*$ we have $(S_1 U_2)(S_3 U_4) = G$

In the above definition, we highlight some helpful mnemonic details:

- (i) Each symbol u_i denotes taking some $U_i \in \tau_*$ using a universal quantifier.
- (ii) Each symbol s_i^j denotes taking some $S_j \in [G]^{<\kappa}$ using an existence quantifier,
- (iii) The corresponding index i or j in U_i and S_j^i indicates the precise order in which each successive step from (i) and (ii) is performed. For example: $u_1 s_2^1$ vs $u_2 s_1^1$. The former being,

$\forall U_1 \in \tau_* \quad \exists S_2 \in [G]^{<\kappa} \quad (G = U_1 S_2)$

while the latter is

$\exists S_1 \in [G]^{<\kappa} \quad \forall U_2 \in \tau_* \quad (G = U_2 S_1)$

The authors note that one may define infinitely properties by iterating the above steps. A helpful diagram of relationships between these, and many additional properties, is also provided by the authors.

Let X be a set of infinite cardinality δ. The main results in this paper are the following:

- The permutation group $S_{<\omega}(X)$ satisfies (a) for ω, (b) for ω_1 and (c) for $\kappa = \omega_1$ and $\lambda = \omega$. However, it does not satisfy neither (e) nor (f) for $\kappa = \lambda = \delta$.
- The permutation group $S(X)$ satisfies (a) for ω, (d) for ω_1 and (e) for $\kappa = \omega_1$ and $\lambda = \omega$. However, it does not satisfy (b) for $\kappa = \delta$.

The authors ask the following question in this paper:

(Q.) Does there exist a topological group with the $u_1 s_2^1 u_1 s_3^1 u_1$ property which does not satisfy (a) for ω_1 nor (c) for $\kappa = \omega_1$ and $\lambda = \omega$?

Reviewer: Victor Hugo Yanez (Matsuyama)

MSC:

22A05 Structure of general topological groups
54D65 Separability of topological spaces
Keywords:
topological group; separable; narrow; precompact; cardinal

Full Text: DOI arXiv

References:

This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.