Orr, Martin

Unlikely intersections with Hecke translates of a special subvariety. (English) Zbl 07328106

This paper discusses some cases of the Zilber-Pink conjecture. Specifically, Conjecture 1.2 in the paper looks at the restriction of Zilber-Pink to look at the intersections of an irreducible algebraic curve $V \subset S$ which is not contained in any proper special subvariety of S, with a special subvariety $S_H \subset S$ of codimension at least 2 (here S is a pure Shimura variety).

On one hand the paper obtains a conditional result, where Conjecture 1.2 is proven under two arithmetic conjectures. This is not an uncommon feature in the area of Zilber-Pink problems as the proofs usually rely on the well-established Pila-Zannier strategy which combines o-minimality with point counting, and it is now well-understood that the arithmetic part is usually more difficult.

But the paper also proves two unconditional cases of Conjecture 1.2 when the Shimura variety is of the form $A_g \times A_g$, where $g \geq 2$ and A_g is the moduli space of principally polarised abelian varieties of dimension g. Theorems 1.3 and 1.4 are the first proven cases of Zilber-Pink that do not fall under the setting of products of modular curves, or of the André-Oort conjecture.

Aside from using the Pila-Zannier strategy, the proofs use previous results of the author and some recent functional transcendence results of Z. Gao [J. Reine Angew. Math. 732, 85–146 (2017; Zbl 1422.11140)].

Reviewer: Sebastian Eterović (Berkeley)

MSC:
11G18 Arithmetic aspects of modular and Shimura varieties
14G35 Modular and Shimura varieties

Keywords:
unlikely intersections; Shimura varieties; Hecke correspondences; Zilber-Pink

Full Text: DOI

References:

Ullmo, E.

This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.