Reznichenko, Evgenii; Sipacheva, Ol’ga
Discrete subsets in topological groups and countable extremally disconnected groups. (English) Zbl 0733.70.077

Summary: In 1967 Arhangel’skii posed the problem of the existence in ZFC of a nondiscrete extremally
disconnected topological group. The general case is still open, but we solve Arhangel’skii’s problem for
the class of countable groups. Namely, we prove that the existence of a countable nondiscrete extremally
disconnected group implies the existence of a rapid ultrafilter; hence, such a group cannot be constructed
in ZFC. We also prove that any countable topological group in which the filter of neighborhoods of the
identity element is not rapid contains a discrete set with precisely one limit point, which gives a negative
answer to Protasov’s question on the existence in ZFC of a countable nondiscrete group in which all
discrete subsets are closed.

MSC:
54G05 Extremally disconnected spaces, F-spaces, etc.
54H11 Topological groups (topological aspects)
03E35 Consistency and independence results
22A05 Structure of general topological groups

Full Text: DOI

References:

(1967)
Dokl. 20 (1979), 783-787.
· Zbl 0820.22001
[10] Keyantuo, Valentin; Zelenyuk, Yevhen, Discrete subsets and convergent sequences in topological groups, Topology Appl., 191,
137-142 (2015) · Zbl 1325.54019
[14] Miller, Arnold W., There are no \((Q\,\text{-})\)-points in Laver’s model for the Borel conjecture, Proc. Amer. Math. Soc., 78, 1,
103-106 (1980) · Zbl 0439.03035
[15] Mokobodzki, Gabriel, Ultrafiltres rapides sur N. Construction d’une densité relative de deux potentiels comparables. Sémi-
mathématique, Paris
[16] Ponomarev, V. I.; Šapiro, L. B., Absolutes of topological spaces and of their continuous mappings, Uspehi Mat. Nauk, 31,
5(191), 121-136 (1976) · Zbl 0341.54048

[23] Stone M. H. Stone, Algebraic characterizations of special Boolean rings, Fund. Math. 29 (1937), 223-302 · Zbl 63.0872.02

[28] Zelenyuk, E. G., Extremal ultrafilters and topologies on groups, Mat. Stud., 14, 2, 121-140 (2000) · Zbl 0980.22002

This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.