Beraldo, Dario

Summary: Let \mathcal{Y} be a derived algebraic stack satisfying some mild conditions. The purpose of this paper is three-fold. First, we introduce and study $\mathbb{H}(\mathcal{Y})$, a monoidal DG category that might be regarded as a categorification of the ring of differential operators on \mathcal{Y}. When $\mathcal{Y} = \text{LS}_G$ is the derived stack of G-local systems on a smooth projective curve, we expect $\mathbb{H}(\text{LS}_G)$ to act on both sides of the geometric Langlands correspondence, compatibly with the conjectural Langlands functor. Second, we construct a novel theory of D-modules on derived algebraic stacks. In contrast to usual D-modules, this new theory, to be denoted by \mathcal{D}^{der}, is sensitive to the derived structure. Third, we identify the Drinfeld center of $\mathbb{H}(\mathcal{Y})$ with $\mathcal{D}^{\text{der}}(L\mathcal{Y})$, the DG category of \mathcal{D}^{der}-modules on the loop stack $L\mathcal{Y} := \mathcal{Y} \times_{\mathcal{Y} \times \mathcal{Y}} \mathcal{Y}$.

MSC:
14D24 Geometric Langlands program (algebro-geometric aspects)
14F05 Sheaves, derived categories of sheaves, etc. (MSC2010)
14F10 Differentials and other special sheaves; D-modules; Bernstein-Sato ideals and polynomials
18F99 Categories in geometry and topology

Keywords:
derived algebraic geometry; coherent sheaves; formal completions; Hochschild cohomology; DG categories; Drinfeld center; D-modules

Full Text: DOI

References:

This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.