Hu, Huan; Li, Zhengwei; Wang, Xiaodong
Modelling and analysis of piezoelectric actuators with partially debonded adhesive layers.
(English) Zbl 07357425

Summary: In the modelling of thin-sheet piezoelectric actuators, the bonding condition between the actuator and the host structure can place a significant influence on the behaviour of the actuator. This paper provides a comprehensive theoretical study of the electromechanical behaviour of a thin-sheet piezoelectric actuator bonded to a host structure through a partially debonded adhesive layer under in-plane electric loading. The focus is on the coupled effect of the debonding and adhesive layer on the interfacial stress. The piezoelectric actuator is characterized by a general electro-elastic Euler-Bernoulli beam model featuring both axial and bending deformation. The theoretical solution of the problem is formulated by using singular integral equations, in terms of the interfacial shear and normal stresses, which are solved by using Chebyshev polynomials. The introduction of the adhesive layer in the model changes the singular behaviour of the problem. The current singular integral equations are shown to be effective in solving for both singular and non-singular stresses. Typical examples have been provided to show the effect of the geometry and the material property on the local stress field along the interface.

MSC:
74-XX Mechanics of deformable solids

Keywords:
piezoelectric actuator; adhesive layer; debonding; bending; singularity

Full Text: DOI

References:
[15] Han, L, Wang, XD, Sun, Y. The effect of bonding layer properties on the dynamic behaviour of surface-bonded piezoelectric...

[18] Im, S, Atluri, SN. Effects of a piezo-actuator on a finitely deformed beam subjected to general loading. AIAA J 1989; 27(12): 1801-1807. · Zbl 0705.73061 · doi:10.2514/3.10337

This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.