Let P be a nonempty bounded subset in the Euclidean plane \mathbb{R}^2. Let us denote by $\delta(P)$ the smallest radius of a ball having its center in P and covering P.

R. Walter proved [Minimax Theory Appl. 2, No. 2, 285-318 (2017; Zbl1380.51012)] that $L(\Gamma) \geq 2\sqrt{3} \delta(\Gamma)$ for each triangle P, where Γ is the boundary of P and $L(\Gamma)$ is the length of Γ. The equality holds exactly for equilateral triangles. He also conjectured $L(\Gamma) \geq \pi \delta(\Gamma)$ for any closed convex curve Γ in \mathbb{R}^2, and proved the conjecture when Γ is a convex closed curve of class C^2 and all curvature centers of Γ lie in the interior of the curve.

The authors give an explicit expression of $\delta(\Gamma)$ as a function of the angles and the lengths of the sides (Theorem 2), and use it to present a simplified proof of the mentioned result for the triangle. They also prove that $L(\Gamma) \leq (2 + \pi) \delta(\Gamma)$ for any closed curve Γ (Theorem 3), with equality exactly for sets made of the union of half-circle of radius r and a line segment of length $2r$. If P is a convex n-gon ($n \geq 2$) with boundary Γ, then (Theorem 4):

$$L(\Gamma) \leq 2 \left(1 + (n - 1) \sin \left(\frac{\pi}{2(n-1)} \right) \right) \delta(\Gamma),$$

and an n-gon that achieves the equality is presented.

Finally, an open problem related to those above is proposed in the last section.

Reviewer: Pedro Martín Jiménez (Badajoz)

MSC:
52A10 Convex sets in 2 dimensions (including convex curves)
52A27 Approximation by convex sets
52A40 Inequalities and extremum problems involving convexity in convex geometry
53A04 Curves in Euclidean and related spaces

Keywords:
approximation by polytopes; convex curve; convex polygon; relative Chebyshev radius; self Chebyshev radius

Full Text: DOI

References:

This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.