Semisalov, B. V.; Grebenev, V. N.; Medvedev, S. B.; Nazarenko, S. V.

Numerical analysis of a self-similar turbulent flow in Bose-Einstein condensates. (English)

Summary: We study a self-similar solution of the kinetic equation describing weak wave turbulence in Bose-Einstein condensates. This solution presumably corresponds to an asymptotic behavior of a spectrum evolving from a broad class of initial data, and it features a non-equilibrium finite-time condensation of the wave spectrum \(n(\omega) \) at the zero frequency \(\omega \). The self-similar solution is of the second kind, and it satisfies boundary conditions corresponding to a nonzero constant spectrum (with all its derivative being zero) at \(\omega = 0 \) and a power-law asymptotic \(n(\omega) \to \omega^{-x} \) at \(\omega \to \infty; x \in \mathbb{R}^+ \). Finding it amounts to solving a nonlinear eigenvalue problem, i.e. finding the value \(x^* \) of the exponent \(x \) for which these two boundary conditions can be satisfied simultaneously. To solve this problem we develop a new high-precision algorithm based on Chebyshev approximations and double exponential formulas for evaluating the collision integral, as well as the iterative techniques for solving the integro-differential equation for the self-similar shape function. This procedures allow to achieve a solution with accuracy \(\approx 4.7\% \) which is realized for \(x^* \approx 1.22 \).

MSC:

35Qxx Partial differential equations of mathematical physics and other areas of application
65Dxx Numerical approximation and computational geometry (primarily algorithms)
76Fxx Turbulence

Keywords:
wave turbulence; Bose gas; nonlinear spectral problem; cubature formula; pseudospectral method; relaxation method; analysis of the error

Full Text: DOI

References:
[14] Galtier, S.; Nazarenko, S. V.; Buchlin, E.; Thalabard, S., Nonlinear diffusion models for gravitational wave turbulence, Phys...
D. 390, 84-88 (2019) · Zbl 1448.83006

[32] Salzer, H. E., Lagrangian interpolation at the Chebyshev points \(x_n, \nu \equiv \cos \left(\nu \pi /n \right), \nu = 0 (1) n; \) some unnoted advantages, Comput J, 15, 2, 156-159 (1972) · Zbl 0242.65007

[34] Escobedo, M.; Velázquez, J., On the blow up and condensation of supercritical solutions of the Nordheim equation for bosons, Commun Math Phys, 330, 1, 331-365 (2014) · Zbl 1294.35166

