Feng, Ziqin; Nukala, Naga Chandra Padmini

Sub-posets in ω^ω and the strong Pytkeev* property. (English) Zbl 07387388

Topology Appl. 300, Article ID 107750, 9 p. (2021)

A partially ordered set Q is a Tukey quotient of another partially ordered set P iff there is a map $f : P \to Q$ which maps cofinal sets of P to cofinal sets of Q, here a subset R of P is cofinal iff for every $p \in P$ there is an $r \in R$ with $p < r$. The Tukey order is then an order on partially ordered sets induced by the relation of being a quotient, that is, $P \leq_T Q$ iff Q is a Tukey quotient of P. Tukey classes are equivalence classes of the Tukey order. The present work uses now the Tukey order to compare partially ordered subsets of the partially ordered set $(0, 1)^\omega$ (product order of $0 < 1$ for a countable product) and constructs a 2^{\aleph_0} sized antichain with respect to the Tukey ordering consisting of partially ordered subsets of $(0, 1)^\omega$. Furthermore, partially ordered subsets of ω^ω are investigated.

In particular, the authors solve two recent open questions posted in the paper [J. C. Ferrando et al., Topology Appl. 208, 30–39 (2016; Zbl 1357.54017)]: First, any topological group with a Σ_2 base admits a ω^ω-base; second any separable metric space M is Polish iff $\mathcal{K}(M)$ is Tukey reducible to Σ for any unbounded and boundedly-complete proper partially ordered subset Σ of ω^ω.

Furthermore, the authors study the strong Pytkeev* property. They provide a sufficient condition for the strong Pytkeev* property. They also investigate notions derived from a partially ordered set P meeting below specifications. Recall that metrisable means that one can define a metric on the space which generates the given topology. A second countable topology is a topological space which has a countable base of the topology. Compact sets are sets satisfying that every cover of open sets of the given set contains a finite subcover. A P-base is defined locally: If the partially ordered set P is a Tukey quotient of some base of the neighbourhood of x, then one says that the point x has a P-base and the whole space X has a P-base, if every $x \in X$ has a P-base. The authors extend Theorem 1.2 of [T. Banakh, J. Kakol and J. P. Schürz, ω^ω-base and infinite-dimensional compact sets in locally convex spaces, to appear in Rev. Mat. Complut. (doi:10.1007/s13163-021-00397-9), Preprint: arXiv:2007.04420] by showing that each uncountably-dimensional locally convex space with a P-base contains an infinite-dimensional metrizable compact subspace if P is a directed set equipped with a second-countable topology in which every convergent sequence in P is bounded.

Reviewer: Frank Stephan (Singapore)

MSC:
54D70 Base properties of topological spaces
06A06 Partial orders, general
46B50 Compactness in Banach (or normed) spaces

Keywords:
Tukey order; strong Pytkeev* property; ω^ω-base; $\mathcal{K}(M)$-base; P-base; locally convex space (lcs); partially ordered sets (posets); function spaces

Full Text: DOI

References:
[1] Banakh, T., Topological spaces with an $(\omega^\omega \\setminus \omega \setminus \omega \setminus R)$-base, Diss. Math., 538, 141 (2019), MR3942223 · Zbl 1470.54015
[4] Banakh, T.; Leiderman, A., $(\omega^\omega \\setminus \omega \setminus \omega \setminus R)$-dominated function spaces and $(\\omega^\omega \\setminus \omega \setminus \omega \setminus R)$-bases in free objects of topological algebra, Topol. Appl., 241, 203-241 (2018) · Zbl 1397.54036
[10] Feng, Z., P-bases and topological groups
[19] Leiderman, A. G.; Pestov, V.; Tomita, A. H., On topological groups admitting a base at the identity indexed by \((\omega^\omega, \omega^\omega) \)\, Fundam. Math., 238, 79-100 (2017) - Zbl 1382.22002

This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.