Mondal, Mandira

\(\beta\)-density function on the class group of projective toric varieties. (English) [Zbl 07389888]

Summary: We prove the existence of a compactly supported, continuous (except at finitely many points) function \(g_{I,m}: [0, \infty) \rightarrow \mathbb{R}\) for all monomial prime ideals \(I\) of \(R\) of height one where \((R,m)\) is the homogeneous coordinate ring associated to a projectively normal toric pair \((X, D)\), such that

\[\int_0^\infty g_{I,m}(\lambda)d\lambda = \beta(I, m),\]

where \(\beta(I, m)\) is the second coefficient of the Hilbert-Kunz function of \(I\) with respect to the maximal ideal \(m\), as proved by Huneke-McDermott-Monsky [8]. Using the above result, for standard graded normal affine monoid rings we give a complete description of the class map \(\tau_m: \text{Cl}(R) \rightarrow \mathbb{R}\) introduced in [8] to prove the existence of the second coefficient of the Hilbert-Kunz function. Moreover, we show the function \(g_{I,m}\) is multiplicative on Segre products with the expression involving the first two coefficients of the Hilbert polynomial of the rings and the ideals.

MSC:

13D40 Hilbert-Samuel and Hilbert-Kunz functions; Poincaré series
13H15 Multiplicity theory and related topics
14M25 Toric varieties, Newton polyhedra, Okounkov bodies
52B20 Lattice polytopes in convex geometry (including relations with commutative algebra and algebraic geometry)

Keywords:

coefficients of Hilbert-Kunz function; Hilbert-Kunz density function; \(\beta\)-density function; projective toric variety; height one monomial prime ideal; convex geometry

Full Text: DOI

References:

This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.