Cui, Xuehui; Chen, Xiaomin

The k-almost Yamabe solitons and contact metric manifolds. (English) [Zbl 07393756]

Rocky Mt. J. Math. 51, No. 1, 125-137 (2021)

Summary: We introduce the concept of a k-almost Yamabe soliton which extends naturally from Yamabe solitons. Our aim is to study the k-almost Yamabe soliton (g, V, k, λ) on a contact metric manifold M^{2n+1}. Firstly, for a general contact metric manifold, it is proved that V is Killing if the potential vector field V is a contact vector field and that M is K-contact if V is collinear with Reeb vector field. Secondly, we prove that a compact K-contact manifold, admitting a k-almost Yamabe gradient soliton, is isometric to a standard unit sphere. Moreover, for a complete Sasakian manifold admitting a k-almost Yamabe soliton, we show that it is isometric to a standard unit sphere $S^{2n+1}(1)$ when $n > 1$ and for $n = 1$, M is also isometric to a standard unit sphere if it admits a closed k-almost Yamabe soliton. Finally, we consider a contact metric (κ, μ)-manifold with a nontrivial k-almost Yamabe gradient soliton and show that it is flat in dimension 3 and in higher dimension M is locally isometric to $E^{n+1} \times S^n(4)$. In the end, we construct two examples of contact metric manifolds with a k-almost Yamabe soliton.

MSC: 53D10 Contact manifolds (general theory) 53D25 Geodesic flows in symplectic geometry and contact geometry 53C25 Special Riemannian manifolds (Einstein, Sasakian, etc.)

Keywords: k-almost Yamabe soliton; K-contact manifold; Sasakian manifold; contact metric $(\kappa; \mu)$-manifold

Full Text: DOI

References:

This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.