Ahmed, H. M.
Computing expansions coefficients for Laguerre polynomials. (English) Zbl 07394784

In the paper the author develops identities that allow us expressing $x^m p_n(x)$, $p_n(x)q_m(x)$, and $\prod_{j=1}^{s} p_{n_j}(x)$ in terms of generalized Laguerre polynomials, denoted by L_n^γ, where $p_n(x)$, $q_m(x)$ and $p_{n_j}(x)$ are polynomials of degrees n, m and n_j, respectively.

More precisely, the author shows that in the expansion

$$x^m q_m(x) = \sum_{i=0}^{n+m} a_i(n,m)L_i^\alpha(x),$$

the coefficients $a_i(n,m)$, can be written as,

$$a_i(n,m) = (-1)^i \frac{i!((\alpha + 1)_m)}{i!} \sum_{r=0}^{n} \binom{r + m}{i} \frac{(\alpha + m + 1)_i}{r!} q_n(0),$$

for each $i = 0, \ldots, m + n$. So, as corollary, the cases $x^m L_n^\gamma(x)$, $x^m P_n^\gamma(x)$, $x^m V_n(x)$, $x^m W_n(x)$ (where L_n^γ, P_n^γ, V_n and W_n denote the generalized Laguerre polynomials, the Jacobi polynomials, the Chebyshev polynomials of the third and fourth kinds, respectively), are studied and explicit expansions are obtained for $a_i(n,m)$.

Later, in the identity,

$$p_n(x)q_m(x) = \sum_{i=0}^{n+m} c_i(n,m)L_i^\alpha(x),$$

the author states that

$$c_i(n,m) = \frac{(-1)^i i!}{(\alpha + 1)_i} \sum_{k=0}^{m} \sum_{r=0}^{n} \frac{k + r}{i} (\alpha + 1)_{r+k} q^k_m(0)p^r_n(0),$$

$i = 0, \ldots, n + m$. Again, cases such as $L_n^\gamma(x)L_m^\beta(x)$ and $C_n^\beta(x)C_m^\lambda(x)$, (the Charlier polynomials), are considered among others.

Finally, in the expansion

$$\prod_{j=1}^{s} p_{n_j}(x) = \sum_{i=1}^{N_s} c_i(n_1, \ldots, n_s)L_i^\alpha(x),$$

where $N_s = \sum_{j=1}^{s} n_j$, the coefficients $c_i(n_1, \ldots, n_s)$ satisfy the identity

$$c_i(n_1, \ldots, n_s) = \frac{(-1)^i i!}{(\alpha + 1)_i} \sum_{r_1=0}^{n_1} \cdots \sum_{r_s=0}^{n_s} \frac{d_s}{i} (\alpha + 1)_d \prod_{j=1}^{s} \frac{p_{n_j}(0)}{r_j!},$$

$i = 0, \ldots, N_s$, and $d_s = r_1 + \cdots + r_s(x)$.

Once again, the author considers $p_{n_j}(x) = H_{n_j}(x)$ (Hermite polynomials), $p_{n_j}(x) = C_{n_j}^{(\lambda)}(x)$ and $p_{n_j}(x) = L_{n_j}^\gamma(x)$ and obtains, as corollary, explicit expansions for coefficients $c_i(n_1, \ldots, n_s)$.

Reviewer: Iris Athamaica Lopez Palacios (Caracas)

MSC:

- 42C10 Fourier series in special orthogonal functions (Legendre polynomials, Walsh functions, etc.)
- 33B45 Basic orthogonal polynomials and functions (Askey-Wilson polynomials, etc.)
Keywords:
orthogonal polynomials; expansions of polynomials; linearization and connection problems; generalized hypergeometric functions

Full Text: DOI

References:

[16] Gabutti, B., Products of several Jacobi or Laguerre polynomials, Rend Sem Mat Univ Padova, 72, 21-25 (1984) · Zbl 0554.33004

[22] Prudnikov, AP; Brychkov, YA; Marichev, OL., More special functions (1990), New York (NY): Gordon and Breach, New York (NY)

This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.