Alon, Tzvi; Halman, Nir
A faster FPTAS for counting two-rowed contingency tables. (English) Zbl 07395738

Summary: In this paper we provide a deterministic fully polynomial time approximation scheme (FPTAS) for counting two-rowed contingency tables that is faster than any either deterministic or randomized approximation scheme for this problem known to date. Our FPTAS is derived via a somewhat sophisticated usage of the method of K-approximation sets and functions introduced by Halman et al. (2009).

MSC:
90Cxx Mathematical programming
68Wxx Algorithms in computer science
05Cxx Graph theory

Keywords:
contingency tables; dynamic programming; K-approximation sets and functions

Full Text: DOI

References:

This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.