Categories of orthogonality spaces. (English) Zbl 07396436

Summary: An orthogonality space is a set equipped with a symmetric and irreflexive binary relation. We consider orthogonality spaces with the additional property that any collection of mutually orthogonal elements gives rise to the structure of a Boolean algebra. Together with the maps that preserve the Boolean substructures, we are led to the category NOS of normal orthogonality spaces.

Moreover, an orthogonality space of finite rank is called linear if for any two distinct elements e and f there is a third one g such that exactly one of f and g is orthogonal to e and the pairs e, f and e, g have the same orthogonal complement. Linear orthogonality spaces arise from finite-dimensional Hermitian spaces. We are led to the full subcategory LOS of NOS and we show that the morphisms are the orthogonality-preserving lineations.

Finally, we consider the full subcategory EOS of LOS whose members arise from positive definite Hermitian spaces over Baer ordered $*$-fields with a Euclidean fixed field. We establish that the morphisms of EOS are induced by generalised semiunitary mappings.

MSC:

81P10 Logical foundations of quantum mechanics; quantum logic (quantum-theoretic aspects)
06C15 Complemented lattices, orthocomplemented lattices and posets
46C05 Hilbert and pre-Hilbert spaces: geometry and topology (including spaces with semidefinite inner product)

Keywords:
orthogonality spaces; undirected graphs; categories; Boolean subalgebras; linear orthogonality spaces; generalised semilinear map

Full Text: DOI

References:

[3] Dacey, J. R., Orthomodular spaces (1968), University of Massachusetts: University of Massachusetts Amherst, PhD thesis

© 2021 FIZ Karlsruhe GmbH
[18] M. Navara, Constructions of quantum structures, in [5], pp. 335-366. · Zbl 1136.81004
[20] Piron, C., Foundations of Quantum Physics (1976), W.A. Benjamin: W.A. Benjamin Reading · Zbl 0333.46050
[21] Prestel, A., Lectures on Formally Real Fields (1984), Springer-Verlag: Springer-Verlag Berlin etc. · Zbl 0548.12011
[29] A. Wilce, Test spaces, in [5], pp. 443-549. · Zbl 1273.81025

This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.