Tkachenko, Mikhail
On C-embedded subspaces of weakly Lindelöf spaces. (English) Zbl 07402616
Topology Appl. 302, Article ID 107822, 12 p. (2021)

Summary: We show that if the product space $X = \prod_{i \in I} X_i$ is weakly Lindelöf and a subspace Y of X fills all countable subproducts of X, then Y is weakly Lindelöf and C-embedded in X. In particular, if the product space $X = \prod_{i \in I} X_i$ is weakly Lindelöf and the factors X_i are Tychoff and have countable pseudocharacter, then every dense C^*-embedded subspace Y of X is weakly Lindelöf. It is also proved that every dense C^*-embedded subspace of an arbitrary product $\Pi = \prod_{i \in I} X_i$ of Eberlein compacta is pseudocompact (hence C-embedded in Π) and weakly Lindelöf. Finally we present an example of a Lindelöf topological group with a dense C-embedded subgroup that fails to be weakly Lindelöf.

MSC:
54B10 Product spaces in general topology
54C45 C- and C^*-embedding
54D20 Noncompact covering properties (paracompact, Lindelöf, etc.)

Keywords: compact; pseudocompact; weakly Lindelöf; pseudo-ω_1-compact; C-embedded; C^*-embedded; Eberlein compacta; topological group

Full Text: DOI

References:
[12] van Douwen, E.; Kunen, K.; van Mill, J., There can be $\langle C^\ast \rangle$-embedded dense proper subspaces in $\langle \beta \omega \setminus \omega \rangle$, Topol. Appl., 105, 362-370 (1999) · Zbl 0685.54001

Edited by FIZ Karlsruhe, the European Mathematical Society and the Heidelberg Academy of Sciences and Humanities © 2021 FIZ Karlsruhe GmbH

This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.