Summary: In this article, we want to find a map \(u : \overline{\Omega} \to \mathbb{R}^n \) solving, in \(\Omega \), the equation

\[
u^*(H) = G \text{ i.e. } (Du)^t H(u) Du = G
\]

and coupled, on \(\partial \Omega \), either with the Dirichlet-Neumann problem

\[
u = \varphi \text{ and } Du = D\varphi
\]

or the purely Dirichlet problem

\[
u = \varphi
\]

where \(\Omega \subset \mathbb{R}^n \) is a bounded open set, \(G, H : \mathbb{R}^n \to \mathbb{R}^{n \times n} \) and \(\varphi : \overline{\Omega} \to \mathbb{R}^n \) are given. We discuss the case where \(G \) and \(H \) are not necessarily symmetric or skew-symmetric, but have invertible symmetric parts.

MSC:
53-XX Differential geometry

Keywords:
pullback equation; Dirichlet problem; Dirichlet-Neumann problem

Full Text: DOI

References:

Edited by FIZ Karlsruhe, the European Mathematical Society and the Heidelberg Academy of Sciences and Humanities © 2021 FIZ Karlsruhe GmbH

This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.