Lyle, Justin; Montaño, Jonathan; Sather-Wagstaff, Keri

Exterior powers and Tor-persistence. (English) [Zbl 07428836]

J. Pure Appl. Algebra 226, No. 4, Article ID 106890, 7 p. (2022)

Summary: A commutative Noetherian ring R is said to be Tor-persistent if, for any finitely generated R-module M, the vanishing of $\text{Tor}_i^R(M, M)$ for $i \gg 0$ implies M has finite projective dimension. An open question of Avramov, et al. asks whether any such R is Tor-persistent. In this work, we exploit properties of exterior powers of modules and complexes to provide several partial answers to this question; in particular, we show that every local ring (R, \mathfrak{m}) with $\mathfrak{m}^3 = 0$ is Tor-persistent. As a consequence of our methods, we provide a new proof of the Tachikawa Conjecture for positively graded rings over a field of characteristic different from 2.

MSC:
13D07 Homological functors on modules of commutative rings (Tor, Ext, etc.)
13C10 Projective and free modules and ideals in commutative rings
13D02 Syzygies, resolutions, complexes and commutative rings

Keywords:
exterior squares; Tachikawa’s conjecture; Tor-persistence

Full Text: DOI

References:

This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.