A semitopological semigroup is a semigroup with a Hausdorff topology for which the product is separately continuous. We say that semitopological semigroup S is left reversible if $s\bar{S} \cap t\bar{S} \neq \emptyset$ for all $s, t \in S$. A subset K of a Banach space is said to have normal structure if for each bounded subset W of K that contains more than one point, there is w in convex hull of W such that $\sup\{\|x - w\| : w \in W\} < \sup\{\|x - y\| : x, y \in W\}$. We say that K has weak normal structure (weak* normal structure) if every weakly compact (weak* compact) subset C of K has normal structure. A Banach space E is called L-embedded if the canonical image of E in its second dual E^{**} is l^1-summand in E^{**}, i.e. if there is a subspace \sum of E^{**} such that $E^{**} = E \oplus_1 \sum$.

In this paper, the authors study the long standing problem as to when a left reversible semitopological semigroup S acting as a nonexpansive mapping on a weak* closed convex subset K of the dual space E^* of a Banach space E has a common fixed point in K. It is shown that if the action is separately weak* continuous and there is an element $b \in K$ such that orbit Sb is bounded, then K has a common fixed point for S provided K has weak* normal structure. If K is also L-embedded and Sb is weakly precompact, then K has a common fixed point for S provided K has a weak normal structure. The authors also study the notion of local amenability on the space $C_b(S)$ of all bounded continuous functions on a semitopological semigroup S.

Reviewer: T. D. Narang (Amritsar)

MSC:

47H10 Fixed-point theorems
47H20 Semigroups of nonlinear operators
47D03 Groups and semigroups of linear operators
46B20 Geometry and structure of normed linear spaces

Keywords:

fixed point; invariant mean; submean; average Chebyshev center; L-embedded set; local left amenability

Full Text: DOI

References:

[22] A. P. Robertson and W. Robertson, Topological Vector Spaces, Cambridge Univ. · Zbl 0139.30901

This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.