She, Mianfu; Li, Dongfang; Sun, Hai-wei
A transformed L_1 method for solving the multi-term time-fractional diffusion problem.
(English) [Zbl 07442893]

Summary: In this paper, we present a novel scheme for solving a time-fractional initial-boundary value problem, where the equation contains a sum of Caputo derivatives with orders between 0 and 1. In order to overcome the difficulty of initial layer, we introduce a change of variable in the temporal direction and investigate the regularity of the solutions of the resulting system. A modified L_1 approximation is used to approximate the Caputo derivatives and a standard Galerkin-Spectral method is applied to approximate the spatial derivatives. Unconditional stability and convergence of the fully-discrete scheme are proved by applying a novel discrete fractional Grönwall inequality. Finally, numerical examples are given to confirm our theoretical results.

MSC:
65-XX Numerical analysis
35-XX Partial differential equations

Keywords:
multi-term time-fractional equation; modified L_1 scheme; Chebyshev-Galerkin spectral method; error estimates

Full Text: DOI

References:

Edited by FIZ Karlsruhe, the European Mathematical Society and the Heidelberg Academy of Sciences and Humanities © 2022 FIZ Karlsruhe GmbH

This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.