Akobirshoev, M. O.

Summary: Let $L_{2,\mu}(\mathbb{R}^2)$, $\mu(x,y) = \exp\{-(-x^2 + y^2)\}$, $\mathbb{R} = (-\infty, +\infty)$, $\mathbb{R}^2 := \mathbb{R} \times \mathbb{R}$, be the space of functions f, for which $\mu^{1/2} f \in L_2(\mathbb{R}^2)$. In the metric of space $L_{2,\mu}(\mathbb{R}^2)$, the sharp inequalities of Jackson-Stechkin type are obtained, which relate the best mean-square approximation by “angle” of functions f from classes $L_{r,\mu}(\mathbb{R}^2)$ and the averaged with the weight q generalized mixed modules of continuity $\Omega_{k,l}(D^r f)$, where

$$D := \frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} - 2x \frac{\partial}{\partial x} - 2y \frac{\partial}{\partial y}$$

is the second order Chebyshev differential operator.

MSC:

41Axx Approximations and expansions
42Axx Harmonic analysis in one variable
33-XX Special functions

Keywords:
best approximation by “angle”; translation operator; weight function; Chebyshev-Hermite operator; generalized module of continuity

Full Text: DOI

References:

[9] Suetin, P. K., Classical Orthogonal Polynomials (1979), Moscow: Nauka, Moscow · Zbl 0449.33001

This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.