Summary: We prove a generalization of Orlov’s projectivization formula for the derived category $D^b_{coh}(\mathbb{P}(\mathcal{E}))$, where \mathcal{E} does not need to be a vector bundle; Instead, \mathcal{E} is a coherent sheaf which locally admits two-step resolutions. As a special case, this also gives Orlov’s generalized universal hyperplane section formula. As applications, (i) we obtain a blowup formula for blowup along codimension two Cohen-Macaulay subschemes, (ii) we obtain new “flop-flop=twist” results for a large class of flops obtained by crepant resolutions of degeneracy loci. As another consequence, this gives a perverse schober on \mathbb{C}. (iii) we give applications of above results to symmetric powers of curves and Θ-flops, following Toda [79].

MSC:

14Fxx (Co)homology theory in algebraic geometry
18Exx Categorical algebra
14Cxx Cycles and subschemes

Keywords:

derived categories; projectivization; flops; determinantal varieties; curves; nested Hilbert schemes

Full Text: DOI

References:

[34] Fulton, W.; Frøgseth, R., Schubert Varieties and Degeneracy Loci (2006), Springer - Zbl 0013.14016
[37] Haru, W., On derived equivalence for Abaua flop: mutation of non-commutative crepant resolutions and spherical twists (2017), preprint
[42] Jiang, Q., On the Chow theory of projectivizations (2019), in press; See also
[46] Jiang, Q.; Leung, N. C., Categorical duality between joins and intersections
[76] Thomas, R. P., Notes on HPD, preprint
[80] Voisin, C., Remarks and questions on coisotropic subvarieties and 0-cycles of hyper-Kähler varieties, (K3 Surfaces and Their Moduli (2016), Springer), 365-399 · Zbl 1352.32010
[81] Weyman, J.; Zhao, G., Noncommutative desingularization of orbit closures for some representations of \(G L_n\) (2012), preprint

This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.