Juschenko, Kate; Schneider, Friedrich Martin

Skew-amenability of topological groups. (English) Zbl 07466640

Summary: We study skew-amenable topological groups, i.e., those admitting a left-invariant mean on the space of bounded real-valued functions left-uniformly continuous in the sense of Bourbaki. We prove characterizations of skew-amenability for topological groups of isometries and automorphisms, clarify the connection with extensive amenability of group actions, establish a Folner-type characterization, and discuss closure properties of the class of skew-amenable topological groups. Moreover, we isolate a dynamical sufficient condition for skew-amenability and provide several concrete variations of this criterion in the context of transformation groups. These results are then used to decide skew-amenability for a number of examples of topological groups built from or related to Thompson’s group F and Monod’s group of piecewise projective homeomorphisms of the real line.

MSC:
22A10 Analysis on general topological groups
43A07 Means on groups, semigroups, etc.; amenable groups
54H20 Topological dynamics (MSC2010)

Keywords:
topological group; group action; amenability; extensive amenability; isometry group

Full Text: DOI

References:
[1] Proof. This is a consequence of Proposition 8.2, Remark 8.1, and Corollary 7.6. Alternatively, Corollary 8.3 above may be proved using Corollary 3.13 and Remark 8.1, via a more concrete rendering of the argument proving Proposition 7.5. Similarly, one may deduce Corollary 9.2 below from Corollary 3.13 and amenability of Z, by suitably reproducing the argument from the proof of Proposition 7.5. Furthermore, let us note the following immediate consequences of our observations above: Corollary 8.4. Let A be a unital subring of R. The following hold:

[3] An interesting discussion of properties of a topological space X ensuring that the associated compact-open topology and the topology of pointwise convergence agree on $\text{Homeo}(X)$ is to be found in [12, Remark 3, footnote 2, pp. 3-4].

Edited by FIZ Karlsruhe, the European Mathematical Society and the Heidelberg Academy of Sciences and Humanities
© 2022 FIZ Karlsruhe GmbH

[27] P. A. Linnell, A. Rahm, and D. P. O. Rolfsen, Discretely ordered groups. Algebra Number Theory 3 (2009), no. 7, 797-807 Zbl 1229.06008 MR 2579395 · Zbl 1229.06008

[38] N. W. Rickert, Amenable groups and groups with the fixed point property. Trans. Amer. Math. Soc. 127 (1967), 221-232 Zbl 0152.40203 MR 02277969

This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.