Kayijuka, Idrissa; Alfaqeih, Suliman; Öziş, Turgut
Application of the Cauchy integral approach to singular and highly oscillatory integrals.
(English) Zbl 07479110

Summary: This paper presents a method that is based on the sum of line integrals for fast computation of singular and highly oscillatory integrals

\[\int_{c}^{d} G(x)e^{i\mu(x-c)}dx, \quad -\infty > c > d > \infty, \text{ and } \int_{-1}^{1} f(x)H_I(x)e^{i\mu x}dx, \]

where \(G \) and \(f \) are non-oscillatory sufficiently smooth functions on the interval of integration. \(H_I \) is a product of singular factors and \(\mu \gg 1 \) is an oscillatory parameter. The computation of these integrals requires \(f \) and \(G \) to be analytic in a large complex region \(C \) accommodating the interval of integration. The integrals are changed into a problem of integrals on \([0, \infty)\); which are later computed using the generalized Gauss-Laguerre rule or by the construction of Gauss rules relative to a Freud weights function \(e^{-x^k} \) with \(k \) positive. MATHEMATICA programming code, algorithms and illustrative numerical examples are provided to test the efficiency of the presented experiments.

MSC:
65D30 Numerical integration

Keywords:
highly oscillatory integrals; Gauss quadrature rules; numerical steepest descent method; Gauss-Laguerre quadrature rule; Chebyshev algorithm

Full Text: DOI

References:

[29] Rvachev, V. L., The pressure on an elastic half space of a beam which has the form of a strip, Prikl. Mat. Meck., 20, 248-256 (1956)

This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.