On the best uniform polynomial approximation to the checkmark function. (English)

Summary: The best uniform polynomial approximation of the checkmark function $f(x) = |x - \alpha|$ is considered, as α varies in $(-1, 1)$. For each fixed degree n, the minimax error $E_n(\alpha)$ is shown to be piecewise analytic in α. In addition, $E_n(\alpha)$ is shown to feature $n-1$ piecewise linear decreasing/increasing sections, called V-shapes. The points of the alternation set are proven to be piecewise analytic and monotone increasing in α and their dynamics are completely characterized. We also prove a conjecture of Shekhtman that for odd n, $E_n(\alpha)$ has a local maximum at $\alpha = 0$.

MSC:
41-XX Approximations and expansions
42-XX Harmonic analysis on Euclidean spaces
41A10 Approximation by polynomials
41A50 Best approximation, Chebyshev systems

Full Text: DOI

References:
[1] Bernstein, S. N., Sur le meilleur approximation de $|x|$ par des polynomes de degrés donnés, Acta Math., 37, 1-57 (1913) · Zbl 44.0475.01

This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.