On the weighted fractional integral inequalities for Chebyshev functionals. (English)

Summary: The goal of this present paper is to study some new inequalities for a class of differentiable functions connected with Chebyshev’s functionals by utilizing a fractional generalizated weighted fractional integral involving another function G in the kernel. Also, we present weighted fractional integral inequalities for the weighted and extended Chebyshev’s functionals. One can easily investigate some new inequalities involving all other type weighted fractional integrals associated with Chebyshev’s functionals with certain choices of $\omega(\theta)$ and $G(\theta)$ as discussed in the literature. Furthermore, the obtained weighted fractional integral inequalities will cover the inequalities for all other type fractional integrals such as Katugampola fractional integrals, generalized Riemann-Liouville fractional integrals, conformable fractional integrals and Hadamard fractional integrals associated with Chebyshev’s functionals with certain choices of $\omega(\theta)$ and $G(\theta)$.

MSC:
26A33 Fractional derivatives and integrals
26D10 Inequalities involving derivatives and differential and integral operators
26D15 Inequalities for sums, series and integrals

Keywords:
Chebyshev’s functional; inequalities; fractional integral; weighted fractional integral

Full Text: DOI

References:
[15] Tassadig, A.; Rahman, G.; Nisar, K. S.; Samraiz, M., Certain fractional conformable inequalities for the weighted and the

[18] Amer, E.; Aydi, H.; Arslan, M.; De la Sen, M., Hybrid Čiříč type graphic Y, \(\mathcal{R} \)-contraction mappings with applications to electric circuit and fractional differential equations, Symmetry, 12 (2020)

[37] Rahman, G.; Nisar, K. S.; Abdeljawad, T., Tempered fractional integral inequalities for convex functions, Mathematics, 8 (2020)

[38] Rahman, G.; Nisar, K. S.; Abdeljawad, T., Certain Hadamard proportional fractional integral inequalities, Mathematics, 8 (2020)

This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.