Oyadare, Olufemi O.

Non-spherical Harish-Chandra Fourier transforms on real reductive groups. (English)

Zbl 07488198

Summary: The Harish-Chandra Fourier transform, $f \mapsto Hf$, is a linear topological algebra isomorphism of the spherical (Schwartz) convolution algebra $C^p(G//K)$ (where K is a maximal compact subgroup of any arbitrarily chosen group G in the Harish-Chandra class and $0 < p \leq 2$) onto the (Schwartz) multiplication algebra $\mathcal{Z}(\mathfrak{g}^*)$ (of n-invariant members of $\mathcal{Z}(\mathfrak{g}^*)$, with $\epsilon = (2/p) - 1$). This is the well-known Trombi-Varadarajan theorem for spherical functions on the real reductive group, G. Even though $C^p(G//K)$ is a closed subalgebra of $C^p(G)$, a similar theorem has not however been successfully proved for the full Schwartz convolution algebra $C^p(G)$ except; for $C^p(G//K)$ (whose method is essentially that of Trombi-Varadarajan, as shown by M. Eguchi); for few specific examples of groups (notably $G = SL(2, \mathbb{R})$) and; for some notable values of p (with restrictions on G and/or on members of $C^p(G)$). In this paper, we construct an appropriate image of the Harish-Chandra Fourier transform for the full Schwartz convolution algebra $C^p(G)$, without any restriction on any of G, p and members of $C^p(G)$. Our proof, that the Harish-Chandra Fourier transform, $f \mapsto Hf$, is a linear topological algebra isomorphism on $C^p(G)$, equally shows that its image $C^p(\hat{G})$ can be nicely decomposed, that the full invariant harmonic analysis is available and implies that the definition of the Harish-Chandra Fourier transform may now be extended to include all p-tempered distributions on G and to the zero-Schwartz spaces.

MSC:

43A85 Harmonic analysis on homogeneous spaces
22E30 Analysis on real and complex Lie groups
22E46 Semisimple Lie groups and their representations

Keywords:

Fourier transform; reductive groups; Harish-Chandra’s Schwartz algebras

Full Text: DOI

References:

This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.