Summary: It is well known that given two probability measures μ and ν on \mathbb{R} in convex order there exists a discrete-time martingale with these marginals. Several solutions are known (for example from the literature on the Skorokhod embedding problem in Brownian motion). But, if we add a requirement that the martingale should minimise the expected value of some functional of its starting and finishing positions then the problem becomes more difficult. [M. Beiglböck and N. Juillet, Ann. Probab. 44, No. 1, 42–106 (2016; Zbl 1348.49045]) introduced the shadow measure which induces a family of martingale couplings, and solves the optimal martingale transport problem for a class of bivariate objective functions. In this article we extend their (existence and uniqueness) results by providing an explicit construction of the shadow measure and, as an application, give a simple proof of its associativity.

MSC:
60G42 Martingales with discrete parameter

Keywords:
couplings; martingales; peacocks; convex order; optimal transport

Full Text: DOI

References:

This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.