Mathew, Angel; Deepa, K. R.
Stress-strength reliability: a quantile approach. (English) Zbl 07491700
Statistics 56, No. 1, 206-221 (2022)

Summary: In reliability modelling and analysis of systems, quantile functions play a significant role when
the distribution function under consideration does not possess an analytically tractable form, though
the corresponding quantile function has an explicit form. In the present paper, we propose a quantile-
based approach for stress-strength reliability of a system. We also introduce the quantile versions of
stress-strength reliability for residual lifetime random variables. The effect of monotone transformations
and some characterizations of the proposed measures are discussed. The reliability of multi-component
stress-strength systems based on quantiles is also considered.

MSC:
62-XX Statistics

Keywords:
stress-strength reliability; quantile functions; distribution functions; multi-component systems

Full Text: DOI

References:
statistics and probability, 13-17 (1956), Berkeley (CA): University of California Press, Berkeley (CA)
[2] Birnbaum, ZW; McCarty, RC., A distribution-free upper confidence bound for \(\Pr(Y < X) \), based on independent samples of
(2013) · Zbl 1307.62234
gapore: World Scientific · Zbl 1017.62100
[8] Kayal, S.; Moharana, R.; Sunoj, SM., Quantile-based study of (dynamic) inaccuracy measures, Probab Eng Informational
Sci, 34, 183-199 (2020) · Zbl 1440.62131
[10] Cwik, J.; Michniczuk, J., Estimating density ratio with application to discriminant analysis, Commun Stat - Theory Methods,
18, 3057-3069 (1989) · Zbl 0696.62177
[11] Zardasht, V.; Asadi, M., Evaluation of \(\Pr(X_t > Y_t) \) when both \(X_t \) and \(Y_t \) are residual lifetimes of two systems, Stat
Neerl, 64, 460-481 (2010)
69, 966-970 (1974) · Zbl 0298.62026

This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically
matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original
paper as accurately as possible without claiming the completeness or perfect precision of the matching.