Nicolaidis, Argyris; Psomopoulos, Fotis
DNA coding and Gödel numbering. (English) Zbl 07491733
Physica A 594, Article ID 127053, 11 p. (2022)

Summary: We consider a DNA strand as a mathematical statement. Inspired by the work of Kurt Gödel, we attach to each DNA strand a Gödel’s number, a product of prime numbers raised to appropriate powers. To each DNA chain corresponds a single Gödel’s number G, and inversely given a Gödel’s number G, we can specify the DNA chain it stands for. Next, considering a single DNA strand composed of N bases, we study the statistical distribution of g, the logarithm of G. Our assumption is that the choice of the m th term is random and with equal probability for the four possible outcomes. The ‘experiment’, to some extent, is similar to throwing N times a four-faces die. Through the moment generating function we obtain the discrete and then the continuum distribution of g. There is an excellent agreement between our formalism and simulated data. At the end we compare our formalism to actual data, to specify the presence of non-random fluctuations.

MSC:
82-XX Statistical mechanics, structure of matter

Keywords:
Gödel numbering; nucleotide sequences; information theory; language theory; language representation of biological sequences

Full Text: DOI

References:

This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.