Cammaroto, F.; Noiri, T.
On R-compact spaces. (English) [Zbl 0752.54007]

Let \(\mathcal{U} \) and \(\mathcal{V} \) be open covers of a space \(X \). \(\mathcal{V} \) is a shrinkable refinement of \(\mathcal{U} \) [the reviewer with M. P. Berri and R. M. Stephenson jun., Proc. Kanpur Topol. Conf. 1968, 93–114 (1971; Zbl 0235.54018)] if for each \(V \in \mathcal{V} \), there is a \(U \in \mathcal{U} \) such that \(\text{cl} \, V \subseteq U \). A space is \(U(i) \) or quasi-\(U \)-closed [C. T. Scarborough, Pac. J. Math. 27, 611–617 (1968; Zbl 0189.23104)] if every open cover with shrinkable refinement has a finite subfamily whose closures cover. The authors introduce the concept of \(R \)-compactness; a space is \(R \)-compact if every open cover with shrinkable refinement has a finite subcover. It follows that a quasi-\(H \)-closed space is \(R \)-compact and an \(R \)-compact space is quasi-\(U \)-closed. Many characterizations and some mapping results of \(R \)-compact are obtained.

Reviewer: J. R. Porter (Lawrence)

MSC:
54D30 Compactness
54D25 “P-minimal” and “P-closed” spaces

Keywords:
quasi-\(H \)-closed space; almost compact space