Robinson, James C.
Linear embeddings of finite-dimensional subsets of Banach spaces into Euclidean spaces.
(English) Zbl 1163.54008
Nonlinearity 22, No. 4, 711-728 (2009).

A Borel subset S of a normed linear space V is called prevalent if there exists a compactly supported probability measure μ such that $\mu(v + S) = 1$ for all $v \in V$. This definition was introduced in a slightly different form in [B. R. Hunt, T. D. Sauer and J. A. Yorke, Bull. Am. Math. Soc. (N.S.) 27, No. 2, 217–238 (1992; Zbl 0763.28009)]. For separable spaces an equivalent definition was introduced earlier in [J. P. R. Christensen, Isr. J. Math. 13(1972), Proc. internat. Sympos. partial diff. Equ. Geometry normed lin. Spaces II, 255-260 (1973; Zbl 0249.43002)].

The main purpose of the paper is to study the prevalence of sets of linear maps with finite-dimensional ranges which are one-to-one (or even better) on a given compact subset X of a Banach space under the assumption that X is finite-dimensional in a certain metric sense.

Some of the main results:

(1) (Theorem 3.1) Let X be a compact subset of a Banach space B such that the Hausdorff dimension of $X - X$ is $< k$, where k is a positive integer. Then a prevalent set of linear maps $L : B \to \mathbb{R}^k$ are one-to-one between X and its image.

(2) (Theorem 5.1) For the upper box-counting dimension $d_B(X)$ the author proves that a prevalent set of such linear maps have Hölder continuous inverses on the image of X if the box-counting dimension of X is finite and $k > 2d_B(X)$.

(3) (Theorem 6.4) For the Assouad dimension d_A the author of proves that if $k > d_A(X - X)$, a prevalent set of such linear maps have inverses of the image of X which are Lipschitz up to a logarithmic term.

Reviewer: Mikhail Ostrovskii (Queens)

MSC:
54C25 Embedding
37C45 Dimension theory of smooth dynamical systems
46B20 Geometry and structure of normed linear spaces
54F45 Dimension theory in general topology

Keywords:
Assouad dimension; box-counting dimension; Hausdorff dimension; prevalent set

Full Text: DOI