
Summary: Classical results in the theory of monotone semiflows give sufficient conditions for the generic solution to converge toward an equilibrium or toward the set of equilibria (quasiconvergence). In this paper, we provide new formulations of these results in terms of the measure-theoretic notion of prevalence, developed in J. P. R. Christensen [Isr. J. Math. 13 (1972), Proc. internat. Sympos. partial diff. Equ. Geometry normed lin. Spaces II, 255–260 (1973; Zbl 0249.43002[i]) and B. R. Hunt, T. D. Sauer and J. A. Yorke [Bull. Am. Math. Soc. (N.S.) 27, No. 2, 217–238 (1992; Zbl 0763.28009)]. For monotone reaction-diffusion systems with Neumann boundary conditions on convex domains, we show the prevalence of the set of continuous initial conditions corresponding to solutions that converge to a spatially homogeneous equilibrium. We also extend a previous generic convergence result to allow its use on Sobolev spaces. Careful attention is given to the measurability of the various sets involved.

MSC:

37B05 Dynamical systems involving transformations and group actions with special properties (minimality, distality, proximality, expansivity, etc.)

28D05 Measure-preserving transformations

Keywords:
compact zero-dimensional space; commuting transformations; periodic points; minimal actions; invariant measures

Full Text: DOI arXiv

References:


This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.