Summary: The biharmonic Dirichlet boundary value problem on a bounded domain is the focus of the present paper. By Riesz’ representation theorem the existence and uniqueness of a weak solution is quite direct. The problem that we are interested in appears when one is looking for constructive approximations of a solution. Numerical methods using for example finite elements, prefer systems of second equations to fourth order problems. P. G. Ciarlet and P. A. Raviart [in: Proc. Symp. Math. Aspects Finite Elem. Partial Diff. Equations 33, 125–145 (1974; Zbl 0337.65058)] and P. Monk in [SIAM J. Numer. Anal. 24, 737–749 (1987; Zbl 0632.65112)] consider approaches through second order problems assuming that the domain is smooth. We discuss what happens when the domain has corners. Moreover, we suggest a setting, which is in some sense between Ciarlet-Raviart and Monk, that inherits the benefits of both settings and that give the weak solution through a system type approach.

MSC:
74K20 Plates
35Q74 PDEs in connection with mechanics of deformable solids
35D30 Weak solutions to PDEs

Keywords:
biharmonic operator; corner domains

Full Text: DOI

References:
[14] Kadlec, The regularity of the solution of the Poisson problem in a domain whose boundary is similar to that of a convex domain, Czechoslovak Math. J. 14 (89) pp 386– (1964) - Zbl 0166.37703
[17] Ladyzhenskaya, Linear and Quasilinear Elliptic Equations (1968)

This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.