Higher genus quasimap wall-crossing for semipositive targets. (English) Zbl 1408.14041

For a complex affine algebraic variety W, acted upon by a reductive group G, a choice of character θ determines a GIT quotient W/G. For $\varepsilon \in \mathbb{Q}_{>0} \cup \{0, \infty\}$ stability conditions produce relatively proper Deligne-Mumford moduli stacks of ε-stable quasimaps from pointed curves of genus g to W/G, which determine ε-quasimap descendant invariants when the target is projective or quasi-projective with a nice torus action. For $\varepsilon \in (2, \infty)$ they coincide with the Gromov-Witten invariants of W/G.

The paper extends the authors’ previous conjectures on the wall-crossing formulas for these invariants to higher genus for semi-positive triples (W, G, θ) (i.e. with nef anti-canonical class), and proves them for toric varieties, including the Calabi-Yau case. The proof is inspired by Marian-Oprea-Pandharipande proof [A. Marian et al., Geom. Topol. 15, No. 3, 1651–1706 (2011; Zbl 1256.14057)] of the conjectures for W/G being the Grassmannian, but introduces several new ideas.

Let J_0^ε, J_1^ε be the q-truncations of the Givental’s functions I_0, I_1: $t(\psi) = t_0 + t_1 \psi + t_2 \psi^2 + \ldots$, where $t_j \in H^*(W/G, \mathbb{Q})$ are the even cohomology classes, and $F_\beta^g = \sum q^{j/m}(t(\psi_1), \ldots, t(\psi_m))_{g,m,\beta}$, $\beta \in \text{Eff}(W/G, \theta)$, be the descendant potential. Then a wall-crossing formula asserts that $(J_0^\varepsilon)^{2g-2} F_\beta^g (J_0^\varepsilon(t(\psi) - J_1^\varepsilon))$ remains unchanged for all ε. The conjecture is proven first for $\varepsilon = 0$ when W admits a torus action commuting with the action of G, and such that the fixed points of the induced action on W/G are isolated.

The main result is that the conjecture holds for non-singular projective toric semi-positive GIT quotients $X = \mathbb{C}^{n+r}/(\mathbb{C}^*)^r$, and for the total spaces of the canonical bundles over type A partial flag manifolds. This implies, in particular, that the invariants of non-singular projective semi-positive Fano varieties are independent of ε. For the toric Calabi-Yau, $F_\beta^{g+1}(t(\psi)=m)$ is the A-model genus g potential after applying the mirror map. Assuming mirror symmetry, it should match the B-model potential expanded around the large complex structure point.

Reviewer: Sergiy Koshkin (Houston)

MSC:
14D20 Algebraic moduli problems, moduli of vector bundles
14D23 Stacks and moduli problems
14N35 Gromov-Witten invariants, quantum cohomology, Gopakumar-Vafa invariants, Donaldson-Thomas invariants (algebro-geometric aspects)

Keywords:
stability conditions; quasimap descendant invariants; Gromov-Witten invariants; wall-crossing; toric varieties; semi-positive GIT quotients; mirror symmetry

Full Text: DOI arXiv

References:

This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.