Theorem: Let S be a finite set of places of Q containing 2, ∞. For each $i=1,\ldots,4$, let $c_i,d_i \in Z_S$ be a pair of S-co-prime S-integers such that $\Delta_{i,j} := c_i d_i - c_j d_j$ is non-zero for $i \neq j \in \{1,\ldots,4\}$. Let $\mathcal{Y} \rightarrow \mathbb{P}^1_S$ be the pencil of affine conics determined inside $\mathcal{O}(\mathcal{S}) \oplus \mathcal{O}(\mathcal{S})^{-1}$ by an equation of the form

$$(c_1 t + d_1 s)(c_3 t + d_3 s)x^2 + (c_2 t + d_2 s)(c_4 t + d_4 s)y^2 = 1.$$

Assume that the classes $[-1], [\Delta_{1,2}], [\Delta_{1,4}], [\Delta_{2,3}], [\Delta_{2,4}], [\Delta_{3,4}]$ are distinct linearly independent classes in $Q^*/(Q^*)^2$. Then \mathcal{Y} has an S-integral point.

Examples of \mathcal{Y} include log K3 surfaces. The method used in this paper is the integral descent-fibration method, which is an extension of the fibration-method originally developed by Swinnerton-Dyer.

Reviewer: Noriko Yui (Kingston)

MSC:

110999 Arithmetic algebraic geometry (Diophantine geometry)
14999 Arithmetic problems in algebraic geometry; Diophantine geometry

Keywords:

integral points; log K3 surfaces; fibration method; descent

Full Text: DOI arXiv

References:

This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.