Harpaz, Yonatan

This paper gives explicit sufficient conditions for the existence of integral points on certain schemes which are fibered into affine conics. Examples of such schemes include the case where the scheme is geometrically a smooth log K3 surfaces. A prototypical result is given in the following theorem.

Theorem: Let S be a finite set of places of \mathbb{Q} containing 2, ∞. For each $i = 1, \ldots, 4$, let $c_i, d_i \in \mathbb{Z}_S$ be a pair of S-coprime S-integers such that $\Delta_{i,j} := c_i d_j - c_j d_i$ is non-zero for $i \neq j \in \{1, \ldots, 4\}$. Let $Y \to \mathbb{P}^1_S$ be the pencil of affine conics determined inside $\mathcal{O}(-1) \oplus \mathcal{O}(-1)$ by an equation of the form

$$(c_1 t + d_1 s)(c_2 t + d_2 s)x^2 + (c_3 t + d_3 s)(c_4 t + d_4 s)y^2 = 1.$$

Assume that the classes $[-1], [\Delta_{1,2}], [\Delta_{1,3}], [\Delta_{1,4}], [\Delta_{2,3}], [\Delta_{2,4}], [\Delta_{3,4}]$ are distinct linearly independent classes in $\mathbb{Q}^*/((\mathbb{Q}^*)^2$. Then Y has an S-integral point.

Examples of Y include log K3 surfaces. The method used in this paper is the integral descent-fibration method, which is an extension of the fibration-method originally developed by Swinnerton-Dyer.

Reviewer: Noriko Yui (Kingston)

MSC:
11G99 Arithmetic algebraic geometry (Diophantine geometry)
14G99 Arithmetic problems in algebraic geometry; Diophantine geometry

Keywords:
integral points; log K3 surfaces; fibration method; descent

Full Text: DOI arXiv

References:

© 2022 FIZ Karlsruhe GmbH

This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.