Summary: In the finite field setting, we show that the restriction conjecture associated to any one of a large family of \(d = 2n + 1 \) dimensional quadratic surfaces implies the \(n + 1 \)-dimensional Kakeya conjecture (Dvir’s theorem). This includes the case of the paraboloid over finite fields in which \(-1\) is a square. We are able to partially reverse this implication using the sharp Kakeya maximal operator estimates of J. S. Ellenberg et al. [Mathematika 56, No. 1, 1–25 (2010; Zbl 1189.42010)] to establish the first finite field restriction estimates beyond the Stein-Tomas exponent in this setting.

MSC:

- 42B10 Fourier and Fourier-Stieltjes transforms and other transforms of Fourier type
- 42B25 Maximal functions, Littlewood-Paley theory
- 14G15 Finite ground fields in algebraic geometry
- 52C17 Packing and covering in \(n \) dimensions (aspects of discrete geometry)
- 11T24 Other character sums and Gauss sums

Keywords:

Fourier transform; restriction conjecture; Kakeya conjecture; finite fields

Full Text: DOI arXiv

References:

This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.