Banakh, Taras; Bardyla, Serhii; Guran, Igor; Gutik, Oleg; Ravsky, Alex
Positive answers to Koch’s problem in special cases. (English) Zbl 1441.22003
Topol. Algebra Appl. 8, 76-87 (2020).

Summary: A topological semigroup is monothetic provided it contains a dense cyclic subsemigroup. The Koch problem asks whether every locally compact monothetic monoid is compact. This problem was opened for more than sixty years, till Y. Zelenyuk [Fundam. Math. 245, No. 1, 101–107 (2019; Zbl 1418.22001)] obtained a negative answer. In this paper we obtain a positive answer for Koch’s problem for some special classes of topological monoids. Namely, we show that a locally compact monothetic topological monoid S is a compact topological group if and only if S is a submonoid of a quasitopological group if and only if S has open shifts if and only if S is non-viscous in the sense of Averbukh. The last condition means that any neighborhood U of the identity 1 of S and for any element $a \in S$ there exists a neighborhood V of a such that any element $x \in S$ with $(xV \cup Vx) \cap V \neq \emptyset$ belongs to the neighborhood U of 1.

MSC:
22A15 Structure of topological semigroups
54D30 Compactness

Keywords:
Koch’s problem; monothetic semigroup; non-viscous monoid; topological semigroup; semitopological semigroup; cancellative semigroup; locally compact semigroup; countably compact semigroup; feebly compact semigroup; Tkachenko-Tonita group

Full Text: DOI

References:

This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.