A Hausdorff topological group G is called minimal, if G satisfies the open mapping theorem with respect to continuous isomorphisms with domain G. Morris and Pestov introduced the notion of locally minimal group [S. Morris et al., Colloq. Math. 78, No. 1, 39–47 (1998; Zbl 0917.22003)]. D. Dikranjan, M. Megrelishvili and others asked whether does the group $\oplus_{i=1}^{\infty} Z(p^i)$ admit a non-discrete locally minimal group topology? The main result the paper under this review is the next theorem. Let n be a positive integer and G an infinite abelian group such that $nG = 0$ and $|G| < 2^\omega$, then the only locally minimal group topology on G is the discrete topology. The author give the full description of bounded abelian groups admits only discrete locally minimal group topology. The author ask does the group $\oplus_{i=1}^{\infty} Z(p^i)$ admits a non-discrete locally minimal group topology and he give a partial answer to this question.

Reviewer: Nikolay I. Kryuchkov (Ryazan)

MSC:

22A05 Structure of general topological groups

Keywords:

locally minimal groups; minimal groups

Full Text: DOI

References:

This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.