Wang, Hanfeng; He, Wei
On remainders of locally s-spaces. (English) Zbl 1445.54013 Topology Appl. 278, Article ID 107231, 10 p. (2020).

The system ZFC is the set-theoretic framework for this paper. All spaces are assumed to be Tychonoff. If Y is a subspace of a space X, then a collection \mathcal{S} of subsets of X is called a source for Y in X if Y is expressible as a union of intersections of non-empty subfamilies of \mathcal{S}. A source \mathcal{S} for Y in X is open if all members of \mathcal{S} are open in X. A space X is called an s-space if there exists a countable open source for X in some (equivalently, in every) Hausdorff compactification of X. A space X is a locally s-space if every point of X has a neighborhood which is an s-space. A space Y is a remainder of a space X if there exists a Hausdorff compactification bX of X such that Y is homeomorphic to $bX \setminus X$.

Being inspired by the results on s-spaces shown in [A. V. Arhangel’skii, Commentat. Math. Univ. Carol. 54, No. 2, 121–139 (2013; Zbl 1289.54085)], the authors investigate locally s-spaces and their remainders. In particular, the authors show that every metrizable space having at most countably many accumulation points is an s-space. Furthermore, a space X with a unique accumulation point is an s-space if and only if there exist a metrizable space Z with a unique accumulation point, a compact space Y and a perfect mapping from the direct sum $Y \oplus Z$ onto X. The authors prove that if there exists a perfect mapping $f : X \to Y$ of a space X onto a space Y, then X is a locally s-space if and only if Y is a locally s-space. If an ω-narrow semitopological group G is a locally s-space, then G is an s-space. In consequence, if a countably compact semitopological group G is a locally s-space, then G is a compact topological group. A space X is an s-space if and only if X is a locally s-space such that every (equivalently, some) remainder of X is a locally Lindelöf Σ-space. The authors show an example of a space X which is not a locally s-space but a remainder of X is a locally Lindelöf Σ-space.

If a locally s-space X is not an s-space, then no remainder of X is homogeneous. If X is a nowhere locally compact locally s-space which has a compactification bX such that $bX \setminus X$ is a locally s-space, then both X and $bX \setminus X$ are Lindelöf p-spaces. A space X is a locally s-space if and only if every (equivalently, some) remainder Y of X is a Lindelöf Σ-space outside of some compact subspace of Y. If a remainder Y of a locally s-space X has a G_δ-diagonal, then Y has a countable network and X is an s-space. If a remainder Y of a locally s-space X is locally perfect, then X is an s-space and Y is a Lindelöf Σ-space. Remainders of locally Lindelöf Σ-spaces are also investigated. It is shown that every remainder Y of a locally Lindelöf Σ-space is an s-space outside of some compact subspace of Y. Some other results and corollaries to the main theorems are included in the article. Finally, the authors show an example of a not locally Lindelöf space X and its remainder Y such that Y is an s-space.

Reviewer: Eliza Wajch (Siedlce)

MSC:
54D35 Extensions of spaces (compactifications, supercompactifications, completions, etc.)
54D40 Remainders in general topology
54B05 Subspaces in general topology
54E35 Metric spaces, metrizability
22A05 Structure of general topological groups

Keywords:
s-space; locally s-space; Lindelöf Σ-space; compactification; remainder; source

Full Text: DOI

References:

This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.