Curve counting on elliptic Calabi-Yau threefolds via derived categories.

(English)

Summary: We prove the elliptic transformation law of Jacobi forms for the generating series of Pandharipande-Thomas invariants of an elliptic Calabi-Yau threefold over a reduced class in the base. This proves part of a conjecture by Huang, Katz, and Klemm [M.-x. Huang et al., J. High Energy Phys. 2015, No. 10, Paper No. 125, 80 p. (2015; Zbl 1388.81219)]. For the proof we construct an involution of the derived category and use wall-crossing methods. We express the generating series of PT invariants in terms of low genus Gromov-Witten invariants and universal Jacobi forms.

As applications we prove new formulas and recover several known formulas for the PT invariants of $K3 \times E$, abelian 3-folds, and the STU-model. We prove that the generating series of curve counting invariants for $K3 \times E$ with respect to a primitive class on the K3 is a quasi-Jacobi form of weight -10. This provides strong evidence for the Igusa cusp form conjecture.

MSC:

14N35 Gromov-Witten invariants, quantum cohomology, Gopakumar-Vafa invariants, Donaldson-Thomas invariants (algebrao-geometric aspects)
14F08 Derived categories of sheaves, dg categories, and related constructions in algebraic geometry
14J32 Calabi-Yau manifolds (algebrao-geometric aspects)
14J30 3-folds

Keywords:
Pandharipande-Thomas invariants; elliptic fibrations; Jacobi forms

Full Text: DOI

References:

Edited by FIZ Karlsruhe, the European Mathematical Society and the Heidelberg Academy of Sciences and Humanities
© 2022 FIZ Karlsruhe GmbH

[20] Toda, Y.

This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.