Wang, Shengqian; Xiao, Jianping; Deng, Chengzhi

Infrared image denoising using a smoothed L_0 sparse regression. (English) Zbl 1453.94018

Summary: Sparse representation based on image denoising has acquired considerable interest. In the most previous work on the sparse representation, L_1 and L_0 norm are always used as the sparsity regularisation. Despite the success of L_1 or L_0 norm, the limitation of this approach on its computational complexity or sparsity affects the efficiency or accuracy. In this paper, a smoothed L_0 approach based on infrared image denoising is proposed. Firstly, an improved smoothed L_0-based K-SVD (SL_0-KSVD) method for dictionary learning is presented. And then the infrared images are sparsely represented by the smoothed L_0 method and the coefficients are denoised using the constantly updated K-SVD dictionary. Finally, some experiments are taken on comparing the peak signal to noise ratio (PSNR) performance of our proposed method with its counterparts on different images. The experimental results on both the visualisation and real data of the infrared images demonstrate the superiorities of our proposed method.

MSC:

94A08 Image processing (compression, reconstruction, etc.) in information and communication theory

Keywords:

sparse representation; infrared images; image denoising; dictionary learning; K-SVD; peak SNR; signal to noise ratio; PSNR

Full Text: DOI