In recent years, many of the results of the Minimal Model Program have been extended from characteristic zero to characteristic $p > 5$. For example, existence of log minimal models of threefolds has been proved by C. Birkar [Ann. Sci. Éc. Norm. Supér. (4) 49, No. 1, 169–212 (2016; Zbl 1346.14040)], C. D. Hacon and C. Xu [J. Am. Math. Soc. 28, No. 3, 711–744 (2015; Zbl 1326.14032)]. There has also been significant progress on the log abundance conjecture. In the case of threefold klt pairs, it has been proved when the variety is of log general type or when the boundary divisor is big (in addition to the above references, see also [P. Cascini et al., Ann. Sci. Éc. Norm. Supér. (4) 48, No. 5, 1239–1272 (2015; Zbl 1408.14020]) and [C. Xu, J. Inst. Math. Jussieu 14, No. 3, 577–588 (2015; Zbl 1346.14020)]).

In the present paper, the author builds upon his previous work [L. Zhang, J. Lond. Math. Soc., II. Ser. 99, No. 2, 332–348 (2019; Zbl 1410.14013)] and proves abundance for threefolds with non-trivial Albanese map.

Theorem 1.1. Let X be a klt, \mathbb{Q}-factorial, projective minimal threefold defined over an algebraically closed fields k of characteristic $p > 5$. Assume that the Albanese map is non-trivial. Then K_X is semi-ample.

The author also proves some instances of log abundance.

Theorem 1.2. Let (X, B) be a klt, \mathbb{Q}-factorial, projective minimal pair of dimension three defined over an algebraically closed field of characteristic $p > 5$. Assume that the Albanese map α_X is non-trivial. Denote by $f : X \to Y$ the fibration arising from the Stein factorization of α_X and by X_η the generic fiber of f. Assume moreover that $B = 0$ if

1. $\dim(Y) = 2$ and $\kappa(X_\eta, (K_X + B)|_{X_\eta}) = 0$, or
2. $\dim(Y) = 1$ and $\kappa(X_\eta, (K_X + B)|_{X_\eta}) = 1$.

Then $K_X + B$ is semi-ample.

Reviewer: Justin Lacini (Lawrence)
Zbl 1074.14018
Zbl 1423.14067
Hacon, C. D., Patakfalvi, Z.: Generic vanishing in characteristic $p > 0$ and the characterization of ordinary abelian varieties.
Hacon, C. D., Patakfalvi, Z., Zhang, L.: Birational characterization of abelian varieties and ordinary abelian varieties in
Zbl 1326.14015
Heidelberg Academy of Sciences and Humanities
(2017)Zbl 1422.14028
Mukai, S.: Duality betweenD(X)andD(X)ˆwith its application to Picard sheaves. Nagoya Math. J.81, 153-175 (1981)Zbl 0491.14006 MR 0637060 - Zbl 0491.14006

[47] Zhang, L.

This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.