This paper studies the realizability problem for effective tropical canonical divisors in equicharacteristic zero. More precisely, given a stable tropical curve Γ and a divisor D in the canonical linear system on Γ, the authors provide a combinatorial condition to decide when there exists a smooth curve X over a non-Archimedean field whose stable reduction has Γ as its dual tropical curve together with an effective canonical divisor K_X that specializes to D. The proof of the result relies on the description of the incidence variety compactification of the strata of abelian differentials with prescribed orders of zeros by M. Bainbridge et al. [Duke Math. J. 167, No. 12, 2347–2416 (2018; Zbl 1403.14058)], where the dual graph Γ is equipped with an enhanced level structure and certain residue conditions have to be satisfied. The authors translate these conditions into tropical geometry and solve the corresponding combinatorial problem. In particular, the result implies that the canonical divisor K_Γ on Γ is in general not realizable.

The authors also develop a moduli-theoretic framework to understand specialization of divisors from algebraic to tropical curves as a natural toroidal tropicalization map in the sense of D. Abramovich et al. [Ann. Sci. ´Ecole Norm. Supér. (4) 48, No. 4, 765–809 (2015; Zbl 1410.14049)].

Reviewer: Dawei Chen (Chestnut Hill)

MSC:

14H15 Families, moduli of curves (analytic)
14H10 Families, moduli of curves (algebraic)
32G15 Moduli of Riemann surfaces, Teichmüller theory (complex-analytic aspects in several variables)

Keywords:
tropical geometry; moduli spaces; Hodge bundle; abelian differentials; canonical divisors; flat surfaces; Berkovich spaces

Full Text: DOI

References:

[34] Viviani, F. This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.