Let G be a simple algebraic group over an algebraically closed field. Let P be a parabolic subgroup of G with an abelian unipotent radical P_u, and let L be a Levi subgroup of P. Then G/L is a Hermitian symmetric space. Let B be a Borel subgroup of G contained in P. The Bruhat order on Hermitian symmetric varieties referred to in the title of the article refers to the partial order defined by inclusions of B-orbit closures in G/L. It is named in analogy with the classical Bruhat order, defined by inclusions of Schubert varieties in G/B. Such Schubert varieties are parametrized by elements of the Weyl group of G thanks to the Bruhat decomposition, and the induced partial order on the Weyl group can be encoded in a fully combinatorial way.

The B-orbits in G/L have already been studied, notably by R. W. Richardson and T. A. Springer [Geom. Dedicata 35, No. 1–3, 389–436 (1990; Zbl 0704.20039)]. They are parametrized by combinatorial data as well. The main result of the paper is a combinatorial translation of the partial order alluded to above. This provides a solution to a conjecture of R. W. Richardson and T. A. Springer [Contemp. Math. 153, 109–142 (1993; Zbl 0840.20039), Conjecture 5.6.2].

One ingredient of the proof, which leads to results of independent interest is the following. The inclusion $L \subset P$ provides a homogeneous fibration of G/L onto G/P whose fibers are isomorphic to P_u/L. Under natural identifications and exponential map, this fiber is isomorphic to the Lie algebra p_u of P_u. Orbits under B behave well under this projection, allowing to approach the problem by studying B-orbit closures in G/P (a well-known variation on the classical Bruhat order) and B-orbit closures in the fibers p_u. The latter is studied as a first step in the present article, providing in particular the final steps to settle a conjecture of D. Panyushev [Transform. Groups 22, No. 2, 503–524 (2017; Zbl 1377.22016), Conjecture 6.2].

Reviewer: Thibaut Delcroix (Montpellier)

MSC:
14M27 Compactifications; symmetric and spherical varieties
14M15 Grassmannians, Schubert varieties, flag manifolds

Keywords:
Bruhat order; Borel orbit; symmetric variety; abelian ideal

Full Text: DOI

References:

Steinberg, R.: Lectures on Chevalley Groups. Notes, Yale Univ. (1967)

Yamamoto, A.

This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.