Let $X \subset \mathbb{P}^n$ be a smooth projective variety. The authors consider the embeddings $I_1 : D(X \times_{\mathbb{P}^n} T) \hookrightarrow D(H)$ and $I_2 : D(X^2 \times_{\mathbb{P}^n} T^2) \hookrightarrow D(H)$. They show that the pull-back $I_1^* : D(H) \to D(X \times_{\mathbb{P}^n} T)$ is fully faithful on some subcategories coming from the Lefschetz decompositions of $D(X)$ and $D(T)$. The same result holds for $I_2^* : D(H) \to D(X^2 \times_{\mathbb{P}^n} T^2)$, with the appropriate change of notation. The Lefschetz decompositions are not assumed to be rectangular. Finally, they prove that $I_2^* I_1^*$ gives the isomorphism between the principal parts of $D(X \times_{\mathbb{P}^n} T)$ and $D(X^2 \times_{\mathbb{P}^n} T^2)$.

The underlying idea of the proof is to consider a decomposition of the subcategory $D(X \times_{\mathbb{P}^n} T) \subset D(H)$, where the pieces are nicely ordered in a “chess board”, and study the relations between each piece and the others pieces of the board.

Reviewer: Giosuè Muratore (Roma)

MSC:

- 14F08 Derived categories of sheaves, dg categories, and related constructions in algebraic geometry
- 18G80 Derived categories, triangulated categories

Keywords:

categorification; Plücker formula; homological projective duality

Full Text: DOI

This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.