Ahmadi, Zand M. R.; Rostami, S.

ω-narrowness and resolvability of topological generalized groups. (English) Zbl 1468.22002 J. Algebr. Syst. 8, No. 1, 17-26 (2020).

Summary: A topological group H is called ω-narrow if for every neighbourhood V of its identity element there exists a countable set A such that $VA = H = AV$. A semigroup G is called a generalized group if for any $x \in G$ there exists a unique element $e(x) \in G$ such that $xe(x) = e(x)x = x$ and for every $x \in G$, there exists $x^{-1} \in G$ such that $x^{-1}x = xx^{-1} = e(x)$. Also let G be a topological space and the operation and inversion mapping are continuous, then G is called a topological generalized group. If $\{e(x) | x \in G\}$ is countable and for any $a \in G$, $\{x \in G | e(x) = e(a)\}$ is an ω-narrow topological group, then G is called an ω-narrow topological generalized group. In this paper, ω-narrow and resolvable topological generalized groups are introduced and studied.

MSC:

22A15 Structure of topological semigroups
22A20 Analysis on topological semigroups

Keywords:
resolvable topological generalized group; ω-narrow topological generalized group; precompact topological generalized group; invariance number

Full Text: DOI

References:

This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.